Saddle Points of the Complementary Error Function

By Henry E. Fettis, James C. Caslin and Kenneth R. Cramer

Abstract. The first one hundred zeros of the derivative of the function $w(z) = e^{-z^2}$ Erfc(-iz) are given, together with an asymptotic formula for estimating the higher zeros.

1. In a previous paper by the present authors [1], the zeros of the function

(1)
$$w(z) = e^{-z^2} \operatorname{Erfc}(-iz)$$

were obtained. In this paper, the values of z = x + iy for which

$$dw/dz = 0$$

are given. These points represent singular points of the family of curves

(3)
$$\phi(x, y) \equiv |w| = \text{const}$$

in the x-y plane since at such a point the direction dy/dx of these curves is undefined. As in the case of the zeros of w(z), the saddle points lie in the lower half-plane and are symmetrically located with respect to the y-axis. For convenience, we introduce the function $Y(\rho) = (\sqrt{\pi/2})w(i\rho)$, which satisfies the differential equation

$$dY/d\rho = 2\rho Y - 1.$$

Thus, at a saddle point, $\rho = \rho_n$,

$$(5) 2\rho_n Y(\rho_n) = 1.$$

With the aid of the differential equation (4), we can expand Y in the vicinity of a saddle point as a Taylor series, viz.,

(6)
$$Y = +\frac{1}{2\rho_n} + \frac{1}{2\rho_n} (\rho - \rho_n)^2 + \frac{1}{3}(\rho - \rho_n)^3 + \cdots$$

Hence

(8)

(7)
$$\frac{1}{Y} = 2\rho_n - 2\rho_n(\rho - \rho_n)^2 - \frac{4\rho_n^2}{3}(\rho - \rho_n)^3 + \cdots$$

Introducing the variable $t = \rho - 1/2Y$, this may be written

$$t = (\rho - \rho_n) + \rho_n(\rho - \rho_n)^2 + \frac{2\rho_n^2}{3}(\rho - \rho_n)^3 + \cdots$$
$$= (\rho - \rho_n) + \rho(\rho - \rho_n)^2 - \left[1 - \frac{2\rho^2}{3}\right](\rho - \rho_n)^3 + \cdots$$

Received June 26, 1972.

AMS (MOS) subject classifications (1970). Primary 33A20.

Copyright © 1973, American Mathematical Society

Therefore

(9)
$$\rho - \rho_n = t - \rho t^2 + [1 - 8\rho^2/3]t^3 + \cdots$$

or

(10)
$$\rho_n = \rho - t + \rho t^2 - [1 - 8\rho^2/3]t^3 + \cdots$$

Equation (3) may also be expressed in terms of Y as follows:

(11)
$$\rho_n = \frac{1}{2Y} \left[1 + t^2 + \frac{4}{3Y} t^3 + \cdots \right]$$

The above series will converge rapidly if ρ is close to a saddle point ρ_n . In the next section, an asymptotic approximation to the saddle points is derived which may be used as a first approximation. By computing the corresponding values of Y and t and substituting these into Eq. (11), an improved approximation to ρ_n is obtained. If necessary,* the process may be repeated using the newly computed value of ρ , and continued until convergence is reached. A sample calculation leading to the first saddle point is given at the end of the next section.

2. Asymptotic Approximation to the Saddle Points. At a saddle point, we have, from Eq. (5), $2\rho Y = 1$ or

(12)
$$w = +i/\pi^{1/2}z.$$

The saddle points are assumed to be of the form z = x - iy, with x > 0, y > 0. Setting w(x + iy) = u + iv, Eq. (12) is equivalent to

(13)
$$2e^{y^2-x^2}e^{2ixy}-u+iv=i/\pi^{1/2}z.$$

Replacing w by the first three terms of the continued fraction gives

(14)
$$u - iv = -\frac{i}{\pi^{1/2}} \left[\frac{z^2 - 1}{z(z^2 - 3/2)} \right],$$

and Eq. (13) becomes

(15)
$$2e^{y^2-x^2}e^{2ixy} \doteq \frac{-i}{\pi^{1/2}}\left\{\frac{1}{z[2z^2-3]}\right\}.$$

Since $\arg(z) = -\pi/4 + \sigma$, it follows that the argument of the right side of (15) is $\pi/4 - \sigma$. Hence,

(16)
$$2xy = (2n + \frac{1}{4})\pi + \beta,$$

where $0 \leq \beta \leq \pi/2$ and since, asymptotically, $x \neq y$, we take, as the limiting value of x and y,

(17)
$$\lambda = \left(\left(n + \frac{1}{8}\right)\pi\right)^{1/2}$$

and set**

^{*} By computing a sufficient number of additional terms in Eq. (11), only one application would be required.

^{**} For the justification of this form, see [1, Eq. (29)].

(18)
$$x = \lambda + \alpha + p, \quad y = \lambda - \alpha + p.$$

From Eq. (16) we have, equating magnitudes,

(19)
$$2e^{-4\lambda\alpha-4\alpha p} \doteq \frac{1}{2\sqrt{\pi} (x^2 + y^2)^{3/2}} = \frac{1}{2^{5/2}\sqrt{\pi} [\lambda^2 + \alpha^2 + 2\lambda p]^{3/2}} = \frac{1}{2^{5/2}\sqrt{\pi} \lambda^3 [1 + 2p/\lambda + (\alpha/\lambda)^2]^{3/2}}.$$

Hence

(20)
$$2e^{-4\lambda \alpha} = 1/2^{5/2} \pi^{1/2} \lambda^3;$$

(21)
$$\alpha \doteq \ln(128\pi\lambda^6)/8\lambda$$

The value of p is determined by equating arguments in Eq. (15). We find, denoting the argument of the right side by ϕ ,

(22)
$$\tan 2xy \doteq 1 + 4\alpha^2 - 8\lambda p;$$

(23)
$$\tan\phi \doteq 1 - \frac{6\alpha}{\lambda} + \frac{3}{2\lambda^2}.$$

This gives

(24)
$$p \doteq (8(\lambda \alpha)^2 - 12(\lambda \alpha) + 3)/16\lambda^3.$$

Thus, the desired asymptotic approximation to three terms is

(25)
$$\begin{cases} x \\ -y \end{cases} = \lambda \pm \frac{1}{8\lambda} \ln(128\pi\lambda^6) + \frac{\frac{1}{8}[\ln(128\pi\lambda^6)]^2 - \frac{3}{2}\ln(128\pi\lambda^6) + 3}{16\lambda^3}.$$

The use of the approximation (25) in conjunction with Eq. (11) is illustrated below for the first saddle point. Equation (17) with n = 1 gives

(26)
$$\lambda = 1.8799712060$$

and this, when substituted into Eq. (25), gives

(27)
$$x \doteq 2.5332619139, \quad y \doteq -1.2321384069.$$

The corresponding value of Y is

$$(28) Y = -.0766358650 + .1594090127i.$$

Thus

(29)
$$t = -.0073085147 + .0144867658i.$$

Substituting in Eq. (11) the values of t and y as given by Eqs. (28) and (29), we arrived at the improved values

(30)
$$x \doteq 2.5471305433, \quad y \doteq -1.2251557198,$$

the corresponding values of Y and t being

(31)
$$Y = -.07667898752 + .1594172691i$$
$$t = .00000137615 - .00000251508i.$$

411

N	x	Ŷ	N	x	Y
1	2.54712802825+10	-1.22515709595+00	51	1.2883628281 5+01	-1.24647708265+01
5	3.16103005315406	+2.1.2559613:7E+00	52	1.30055047745401	-1 25805/86005+01
2	7 6550721678510.	-2 62887216475+04	52	1 742627077254 4	-1 27171177095+01
	6 39779/21030E+00	-7 172751/518510	53	1 72/596/979544	-1 20755007045401
4	4.00330443046400	-3.13239149182400	24	1.32490646366+61	-1.20399007012+01
2	4.40030130092+00	-3.57264920335+00	22	1.33644108692+01	-1.2956/423//2+01
2	4.01059495502+00	-3.90901/32002+00	20	1.34019002402701	-1.30/00/02002+01
	5.1415/328/3E+UU	-4.3318395/9/E+66	57	1.3598378492E+u1	-1.3195914484±+01
8	5.4461347739E+Ju	-4.6684220832E+00	58	1.3/13853935E+01	-1.3313903689E+01
9	5./33/6080492+00	-4.983671135JE+UU	59	1.38283578u2E+u1	-1.3430865384E+01
10	6.UU7u346327E+uL	-5.2811402113E+00	60	1.3941914268E+u1	-1.35468258782+01
11	6.2679376653E+JC	-5.5634993766E+Uu	61	1.4054546519E+01	-1.3661810379E+01
12	6.518u3i2553E+ju	-5.832814312uE+ůů	62	1.4166276813E+U1	-1.3775843054E+01
13	6.7585678528±+ju	-6.0907215155E+00	63	1.4277126525E+u1	-1.3888947J93E+01
14	6.99u5787939E+ùu	-6.3385432717E+00	64	1.4387116197E+01	-1.40u1144760E+01
15	7.2149182u67E+0u	-6.5773658881E+00	65	1.4496265587E+u1	-1.4112457444E+01
16	7.4323u64525E+JL	-6.8u8u945823E+00	66	1.46u45937u3E+01	-1.42229457095+01
17	7.6433572151E+uu	-7.u314930u11E+0ú	67	1.4712118848E+01	-1.4332509334E+01
1.8	7.8485984629F+Ju	-7.2482123176F+00	68	1.4818858656F+01	-1.4441287357F+01
19	8.04848838485+40	-7.4588130776F+00	69	1.492483012.45+01	-1.45492581115+01
25	8.2434276772E+ju	-7.6637818847E+00	70	1.5030049632E+01	-1.46564392652+01
21	8.4337692264E+00	-7.8635443393E+UU	/1	1.5134533006E+01	-1.4/6284/849E+01
22	8.6198257218E+UL	-0.0584/52099E+00	12	1.5238295513E+01	-1.48685002942+01
23	8.8u187582UUE+UU	-8.2489u65255E+60	73	1.5341351892E+01	-1.4973412456E+01
24	8.98u169125uE+Ju	-8.43513408702+00	74	1.544371640JE+u1	-1.5077599645E+01
25	9.15493u2694E+UC	-8.6174227572E+00	75	1.5545402812E+01	-1.5181076652E+01
26	9.3263622857E+uu	-8.7960108003E+00	76	1.5646424452E+u1	-1.5283857772E+C1
27	9.4946494133E+00	-8.9711134684E+00	77	1.5746794214E+u1	-1.5385956828E+01
28	9.6599594522E+uL	-9.1429259916E+00	78	1.584652458úE+01	-1.548738719úE+01
29	9.82244575úúE+ju	-9.311626u862E+00	79	1.5945627637E+ú1	-1.5588161800E+01
30	9.9822488903E+JU	-9.477376u74uE+0ù	8ú	1.6044115098E+01	-1.56882931862+01
31	1.0139498135E+01	-9.64.3246831E+00	81	1.6141998312E+01	-1.5787793485E+01
32	1.u294312663E+u1	-9.8u06685869E+0u	82	1.6239288287E+u1	-1.58866744562+01
33	1.u4468u2641E+J1	-9.9583537267E+0.	83	1.6335995699E+ú1	-1.5984947497E+01
34	1.u597070150E+01	-1.0113676453E+u1	84	1.64321309u5E+01	-1.6082623664E+01
35	1.07452699966+41	-1.0266684513E+01	85	1.65277J3961E+u1	-1.6179713679E+01
36	1.u891310412E+u1	-1.0417477933E+01	86	1.6622724632E+01	-1.6276227949E+01
37	1.1u35453688E+u1	-1. 56614973 E+01	87	1.6717202401E+01	-1.6372176576E+01
38	1.11777167.9E+u1	-1.u712786621E+01	86	1.6811146485E+01	-1.6467569372E+01
39	1.1318171446E+u1	-1.u857469582E+u1	89	1.6904565840F+01	-1.6562415867F+01
40	1.1456885382E+31	-1.1(U.27437.E+01	90	1.6997469177E+01	-1.6656725323E+01
	1 1/070310005114	-1 11449740945+14		4 70 80 864 0665	-1 (7565067/75.01
41	1 472076064 64.4	-1 130 E30 E8C 101	31	1 74947644405490	-1.01707001432+61
44	1.1/293400102+31	-1.15803530385401	92	1.7101/014492+01	-1.6843/58883E+01
43	1.100319/0002431	-1.1418108290E+U1	93	1.72/31000402+01	-1.0930520258E+01
44	1.19955460876+31	-1.1954.685/2E+U1	94	1.7304088366E+01	-1./U20/69153E+U1
45	1.21264358746+01	-1.16884656232+01	95	1.7454534212E+01	-1.7120523634E+01
40	1.22559143/62431	-1.18213519252+01	96	1.75445115896+01	-1./211/91552E+01
47	1.23843234128+31	-1+1952///125E+61	97	1.763402//146501	-1./302580552E+01
48	1.25108144792+J1	-1.2082/88211E+01	98	1.7723089617E+01	-1./3928980832+01
49	1.203031891,E+j1	-1.2211429714E+01	99	1.7811704155E+01	-1.7482751401E+01
50	1.2/009786276+01	-1.2338/43879E+61	100	1.7899878J11E+01	-1.7572147579E+01

Zeros of w'(z)

This leads to the next approximation

(32) $x \doteq 2.5471280282, \quad y \doteq -1.2251570959.$

which is now correct to eleven figures, the error being $O(t^4)$.

Aerospace Research Laboratories Wright-Patterson Air Force Base Ohio 45433

1. HENRY E. FETTIS, JAMES C. CASLIN & KENNETH R. CRAMER, "Complex zeros of the error function and of the complementary error function," *Math. Comp.*, v. 27, 1973, pp. 401–407.